An Approach for Fast Hierarchical Agglomerative Clustering Using Graphics Processors with CUDA
نویسندگان
چکیده
Graphics Processing Units in today’s desktops can well be thought of as a high performance parallel processor. Each single processor within the GPU is able to execute different tasks independently but concurrently. Such computational capabilities of the GPU are being exploited in the domain of Data mining. Two types of Hierarchical clustering algorithms are realized on GPU using CUDA. Speed gains from 15 times up to about 90 times have been realized. The challenges involved in invoking Graphical hardware for such Data mining algorithms and effects of CUDA blocks are discussed. It is interesting to note that block size of 8 is optimal for GPU with 128 internal processors.
منابع مشابه
Parallel Computations for Hierarchical Agglomerative Clustering using CUDA Fast and Scalable Computations on Graphics Processors
Graphics Processing Units (GPU) in today’s desktops can well be thought of as a high performance parallel processor. Traditionally, parallel computing is the usage of multiple computing resources to execute computational problems simultaneously. Such computations are possible using multi-core CPUs or computers with multiple CPUs or by using a network of computers in parallel. Today’s GPUs are c...
متن کاملHierarchical Clustering with CUDA/GPU
Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation provides a programming language called CUDA for general-purpose GPU programming. Hierarchical clustering is a common method used to determine clusters of similar data points in multidimensional spaces; if t...
متن کاملNumerical Model of Shallow Water: the Use of NVIDIA CUDA Graphics Processors
In the paper we discuss the main features of the software package for numerical simulations of the surface water dynamics. We consider an approximation of the shallow water equations together with the parallel technologies for NVIDIA CUDA graphics processors. The numerical hydrodynamic code is based on the combined LagrangianEuler method (CSPH-TVD). We focused on the features of the parallel im...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کاملImplementation of Hybrid Clustering Algorithm with Enhanced K-Means and Hierarchal Clustering
We are propose a hybrid clustering method, the methodology combines the strengths of both partitioning and agglomerative clustering methods. Clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at different levels of granularit...
متن کامل